• ОФОРМИТЬ ПОДПИСКУ ОТЗЫВЫ

💻 Программирование [Елена Кантонистова] [Stepik] Рекуррентные сети в NLP и приложениях (2025)

Gatsby

ВЕЧНЫЙ
Регистрация
10 Окт 2018
Сообщения
46,963
Реакции
232,902
Автор: Stepik, Елена Кантонистова
Название: Рекуррентные сети в NLP и приложениях (2025)

Снимок экрана 2025-10-07 в 16.57.21.png

Интенсив посвящен рекуррентным нейронным сетям, применяющимся для решения широкого класса задач в области NLP, а также их приложениям в других областях.
Курс является вторым в линейке курсов по Natural Language Processing после курса "Основы нейронных сетей и NLP".

Чему вы научитесь:
Узнаете как работают рекуррентные нейронные сети
Научитесь работать с фреймворком PyTorch
Сможете решать задачи генерации текстов при помощи RNN
Узнаете, как RNN используются в других областях
Создадите итоговый проект, оформленный в виде FastAPI-сервиса

Слушатели курса освоят следующие темы:
Повторят основы NLP (ML-подходы, w2v, fasttext)
Освоят продвинутые методы Python и познакомятся с фреймворком PyTorch
Узнают как работают рекуррентные нейронные сети
Применят RNN на практике
Освоят фреймворк FastAPI
Сделают итоговый проект с использованием RNN и FastAPI
Узнают о приложениях RNN в других областях

Для кого этот курс:
Курс подойдет всем, кто интересуется областью автоматической обработки текстов (Natural Language Processing)
и в особенности Deep Learning-подходами для решения задач из области NLP.

Программа курса:
Организация курса
Основы NLP: recap
Рекуррентные нейронные сети
Введение в PyTorch
Рекуррентные сети: практика — 1
Рекуррентные сети: практика — 2
Приложения RNN
Ванильный веб-сервис на FastAPI
Итоговый проект

Ваш преподаватель: Елена Кантонистова
Кандидат физико-математических наук, выпускница школы анализа данных Яндекса (ШАД)

Подробнее:
Скрытое содержимое доступно для зарегистрированных пользователей!

Скачать:
 
ВАЖНО:

Не оставляйте комментарии с просьбами обновить / заменить ссылку на скачивание или комментарии типа «404», «ошибка».

Для восстановления ссылки есть кнопки «Жалоба / Восстановить ссылку» в первом посте темы.

При нарушении Ваш комментарий будет удален, а Ваш аккаунт заблокирован на сутки. Пожалуйста, изучите правила нашего сайта.
Сверху Снизу